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The general solution of an elasticity theory problem for a constant thickness 
plate is constructed under the condition that a force and a nonuniformly heated 
plate are applied normally to the boundary planes. The solution is obtained as 

a result of applying the M. E. Vashchenko-Zakharchenko expansion formulas 
to the infinitely high-order differential equations obtained by A. I, Lur’e by a 
symbolic method [l, 21, by a separate analysis of the symmetric and anti- 

symmetric elasticity theory problems relative to the middle plane: 1) for 
constant temperature and given force-s on the boundary planes; 2) for a given 
nonuniform heating and no forces, Simple formulas are presented to determine 
the state of stress in the case of a slowly varying external load and temperature 
of the unbounded plate, For a bounded plate the general solution for no forces 
on the boundary planes and heating resulted in the A. 1. Lur’e solution [l]. 

Let the stresses 

‘G - -czv = 0, z* - ci,, = Cr*, z=+h - 

be given on the boundary planes of a uniformly heated layer of thickness 2h . 
Let us solve the symmetric and antisymmetric problems separately by using the 

representation o* = q * p. 

1”. In the symmetric case (p = O), on the basis of [2] the elastic strain state 

can be represented in the form 

n = - & fI(4 5) x, w = - $2 (4 5) x (1.1) 

o .x=2G[- $ /I(& 5) + $ d”fo (4 L)] x, (J,, = 2G ; h (4 5) * 

f0 (4 C) = 03s d 5 sin d/d, fI (4 5) = g (4 5) - (1 - 24f0 (6 5) 

f2(d, 5) = 1-d cos dsindC+ dccosd 5sind -2(l -v) X 

sin dc sin G?]d-” 

fs (4 5) = g (4 5) + fo (6 0, g (4 5) = cos d 5 con d + 
csindcsind 

C=+, “=&a(i+s~2d,2*i) 7 d2=h2(&+$) 

The displacement V and the stress ovv can be obtained here and below from 

the relationships for u and err by replacing a / dx by a / &/ and a / a~/ by 
a 1 ax. Other components of the stress tensor can be found on the basis of the U, U, 
W. 
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Functions of the form cl, = f (d) 3t, entering into formulas (1.1) where 
is an entire function of arguments d and da. It is seen that the function @ 
solution of an infinitely high order differential equation 

f (4 
is the 

d’ (1 + sin 2d / 2d) Q, = h2f (d)q / 2G (1. f2) 

We apply the M. E. Vashchenko-Zakharchenko expansion formulas [3,43 to soive 
(1.2). We then obtain for the functions f = 

(4 q 
&(l+sinZd/Zd) = 1 c f (a.1 9. 1 t i_ f (0) Qo 

co52 ui 2 (1.3) 

Here tci are the roots of the algebraic equation 1 + sin 2a / 2a = 0, where 
Re a-i > 0, aad the functions Qi are the solution of the second-order equation 

(d” - a&i = q for i # 0 and daqo = q. 
Let us furthermore consider just the case of an unbounded plate. In thecase thefunc- 

tions qk (k = 0, 1, . . .) are determined uniquely from the additional condition 
that qj -+ 0 (i # 0), t3qo / &z 4 0, dqo / ay --t 0 for 5, y--f ~0. 

Using (1.3), we obtain 

@ 
- a (Ql+ Y7dt ’ = - 2G dx 

w= -&[deQo-(l-v)~qj (1.4) 

CI xs = -hh” $ QI + 2vd’Qo + vh2 j$ qo, (T, = d2Qs + q 

It is seen that the series converge for bounded f&rctions q . 
Let q (x, y) be a function varying slowly as a function of x / h, y / h (or 

h a small quantity), which has continuous second derivatives. Then qi s - q / 
aia is an approximate solution of the equation (d2 - ai”)qr = q . Taking accent 

of the formula 

-c 
i 

r(aJ -_ -(++$)/_ 
ais cos2 ai 

(which follows from (1.3) if we formally set d = 0, f = t), we obtain, say 

Q~=vh2~~+Q~~, Q3=Q3* 

Qj* - 
c 

f j fq 5) (Qi + 9 I ai2) 

i 
00f3aai 

We hence find 

d2 (- QI* + 2vQo*) + h2 - Q1* a9 
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The series for Qj* will hence converge more rapidly. it is possible to set 

Qj* s 0 approximately for very slowly varying functions q . 
A more exact (asymptotic) solution can be constructed also for sufficiently smooth 

and slowly varying functions q by setting q z - q / oi2 - daq / ai4 - . . . and sum- 
ming the series thus ori~nating, Such approximate expressions for Qj are also ob- 
tained by a direct expansion of the functions 

C fj (d, 5) fj to, f) 
da(i + sin 2d/2d) - 2da 1 q 

in a series of powers of d . 
Now, let q not be a slowly varying function. The approximate expression written 

down for Qr will be valid (for sufficiently smooth functions q (x, y) even in this 
case, but only for large numbers i. Let such a solution be sufficiently exact For 

i > m. The asymptotic expression for Qj will then have the form 

Here @j are coefficients of a power series expansion in d for the functions 

f j (4 t) I j @,5) =l--l fj tap C) 4 

da (1-t sin 2dJ2d) --iJJr- c 
i-1 

co@ ai da - ai 

This method of obtaining an approximate solution is analogous to the usual meth- 

od of improving the convergence of series. 
Now, let us estimate the convergence of the series in terms of which the solution 

is expressed. To do this, we represent the functions qi in the form (& (z) is 
the Macdonald function, and D is the domain --00 < xo, Yo < 00) 

(f = ~/(x-~o>a-k (Y - yo)2) (1.5) 

which can be written thus 

43 211 
4 PL’ 

(1.6) 

Let us separate the integral over q into two integrals, from 0 to 1 and from 

1 to 00, by selecting the constant 1 so that the function q* would be continuous 
together with its two first derivatives with respect to q for q < I . Let us aLso as- 
sume that q is a function bounded in D . We represent the function q* in the 
section (0, 1) as a Maclauren series in the variable ‘1 
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and we use an asymptotic representation in the section (1, m) 

We consequently have a representation for the functions qn for large n 

gn (2, i.4 = -57 I fh2 + 0 (~3 + 0 (exp (--d)) (1.7) 

Let US emphasize that the point (z, y) belongs to that domain I)@ in which 
Q (5, Y) is a function continuo~ly twice differentiable with respect to z and y 

while I is the distance between the point (ZC, y) and the boundary of the domain&. 

Taking (1.7) into account, as well as the estimates a, = 0 (n>, exp (i I&,> = 

0 (%P), we see that both the series in which the functions Qj and Qj” are ex- 
pressed, and the series obtained by differentiating them term-by-term with respect to 

2 and y , will converge, The series in which the functions Qj” are expressed can 
be differentiated twice term-by-term with respect to x and y. Therefore, the solu- 
tion expressed in terms of the functions Q1 * is more convenient, as has already been 
mentioned above. The terms of the series for the displacements, obtained after term- 
by-term differentiation, will hence be of the order of n-a for large n , while the 
terms in the series for the stresses will be of the order of n-‘. 

A solution in still more rapidly converging series can be obtained for smoother fun- 

ctions p. Thus, if the function 9’ has four continuous derivatives with respect to x 

and y in the domain DO, then we obtain in place of (1.7) 

4n (JG Y) = -ql CZ,~ - CFqi a,4 + 0 (a,-? + 0 (exp (- UN (2, Y) E Da 

Proceeding as above, i. e., summing the series and introducing the functions 

we obtain a series for the displacements, whose terms have the order r@ for large 

n , and the order n-4 for the stresses. The series converge considerably more rap- 

idly in the domain LI, in which p = const. Then on the basis of (1.4) and (1.5) 

and with the ~umptotic repr~entation for the function K. (CC)’ taken into account for 

larger Z, we see that the terms of the series in which the displacements and stresses 
are defined in the domain L?, will be of the order exp (- ano) for larger n (p is 

the distance between the point (x, y) and the boundary of the domain DC). 

2’. kr the antisymmetric case (q s 0) , the elastic state of strain of a plate 
can be reoresented in the form 

1 

u= -g-&(p’-tw,), w=&(Pt+O*) 
a XaT = -h"-&- (PI + 01) + 2vd2 (Pi, + a,,) 

(1.8) 
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01 = 3 (1 - Y)SPo + iO.5 (Y - 2)V -I- 0.3 (2 + 3v)~ld9h 
02 = 3 (1 - v)po + [1,5v 5” - 0,3 (8 --3v)Idapo 
90 (d, 5) = - ~0s d sin dC/d, qr (d, I;) = (1 -2v)cpo (d, 5) + 

II, (d7 5) 
‘~2 (6 5) = 2 (1 - Y) cos d5 cos d .+ d g sin dc cos d - 

d sin d cos dg 

‘PS (d, 5) = 9 (d, 5) + (PO (d, 5), 4 (d, 5) = 5 cos d S cos d c 
sin d5 sin d 

Here the functions pi are determined from the solution of the equation (8 - 
pt’)pi = p for i # 0, d4po = p, f3i are the roots of the equation 1 - 
sin 2f3/2@ = 0, where Re fii > 0. 

The solution of (1.8) is obtained by a method analogous to that used in section 

1.1”. 
We see from (1.8) that the equation for the plate deflections can be written in the 

form 
ut = wo -I- w+ (1. $1 
w* = -&P2, d”wo=+3(1--)p+ 

[ 1.5vp - 0.3 (8 - 3x91 d%p) 

which is a g~era~zation of the equation of medium-thickness plate deflections [5] 
found by an approximate method, where w* = 0 is hence obtained. 

If p is a slowly varying function of the variables x i h and y I’ It, then pi ~5 
-p / pi”* Summing the series, as above, we obtain for 5 = 1 

P, = 0.063 (I - v)p f PI*, P, = 0.246 (I -Y) p + P,* 

We have pj* m 0 for very slowly varying functions. The convergence of the 
series can be investigated exactly as in Sect. 1.1”. 

2. Let us consider the problem of determining the thermoelastic state of a layer 
under nonuniform heating conditions. The solution of such a problem is executed by 

a known method [2] : the particular solution of the thermoelasticity equations is first 

determined without satisfying all the given (zero) boundary conditions, then the coc- 
recting solution of the isothermal problem is found, 

The components of the displacement vector and the stress tensor which correspond 

to the particular solution can be represented in the form [2) 

Here t is the layer temperature, a~ is the coefficient of linear expansion,and 
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the function F is determined from the equation 

AF=++,t, A++$- (2.1) 

1”. Let the layer temperature t be a symmetric function relative to the plane 
z = 0. The the function t can be represented in the form 

(2.2) 

h 

The solution of (2.1) satisfying the conditions rzrn = zrV = 0 for z z= + h - 
will then be 

(2.3) 

Here 1 I (8 - pn2) is an operator inverse to the operator # - p,,s, i.e., 

if the function tn / (da - pn2) is denoted by tn*, then tn* is determined 
from the equation (da - h2ft,* = t,. 

We hence see that the stresses corresponding to the correcting solution should satisfy 
the conditions 

The problem of determining the correcting solution therefore reduces to the prob- 
lem from Sect. 1 for Q = 00. 

We henceforth limit ourselves to finding just a particular solution of the equations 
which occur. The solution obtained will be general only for an infinite layer. The 
functions f (d)~ in the formulas for the displacem~~ and stresses will be represent- 

ed in the form 

by using the expansion formulas and taking into account that 

(2.4) 
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Adding the displacements and stresses corresponding to the particular and correct- 

ing solutions we obtain 

Let us consider the case when t (meaning also the functions ‘hi) varies slowly 
as a function of the variables 5 / h and y I h. Then 7i / (d2 - ai2) x -CC~ 

I Ui2. In this case the functions T, can be represented in simple form. Let us 

limit ourselves to finding the quantity ox, for 5 = 1. We have 

B = 
c 

bi da zi 
i 

- ai 
-h 

We have here used the relationship (f = f,, j = 0, ._. ., 3) 

f k-q 
00 

c ai sin ai (1 + cos 2ai) = Is 
(- qn+r L$_ + $ If (0) + f” (O)l 

i ?I=1 

Therefore, for a slowly varying function i! for 5 = 1 

2”. The solution for the case when the temperature is an antisymmetric function 
relative to z = 0 . Without derivation, let us just present the formulas for the 
displacements and stresses 

3 
L -- 01 

2 ha ‘ 
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h 

Tj, 1 = c bi, t~j (@j, C) ,s’~~.I ; Tti, 1 = S t sin f&C dzt i #O 

i 
* -h 

h 

To, 1 = 
S 

1 
tzdz, bi,, = -v 

-h 
2 Sill pi 

3. Let US consider a bounded plate occupying a domain 62. The boundary con- 
sists Of surfaces z = &k and the cylindrical surface I’ whose equation has the 

form y (z, y) =O, /zl<h. The ~ermoelasticity problem for such a plate for 
forces given on the planes 2 = -&h can be reduced by ordinary means to the solu- 
tion of the elasticity theory problem for an unheated plate without stresses on the 
boundary planes, i. e., to the A. I. Lur’e problem. Additional components determin- 
ed from the solution of the thermoelasticity problem for an infinite layer in which the 
temperature and stress are the same for z = & h in the domain a as they would 
be for a finite plane while the temperature and stress for z = k h outside the dom- 

ain a can be selected arbitrarily, are hence added to the displacements or stresses 
given on the surface I? . We call such a problem fundamental. The difficulty oc- 
curring in such a method of solution is to find a sufficiently simple solution of the 

thermoelasticity problem for an infinite layer. 
Let us note that the ~ndamental problem has a simple solution besides the known 

cases (p = con&, 4 = con&, t = const, loading a slab with cavities at infinity, etc.) 

also when the temperature field of the plate is stationary. This permitted the authors 

of [6,7] to obtain the effective solution of a number of thermoelasticity problems for 
bounded slabs and slabs with cavities, Let us note that the solutions obtained herein 

in Sects. 1 and 2 can be used to find the solution of the fundamental problem. 

Another means of solving the problem is possible, without the preliminary deter- 
mination of the elastic state of strain of the fundamental problem, To do this we gen- 
eralize the A. I. Lur’e formula [l] to the case when t#O, p+O, 4#0. We 
assume first that stresses or displacements are given on the surface I’, while forces 

are applied normally on the planes z=+h. The solution of such a problem 

can again be obtained by a separate analysis of corresponding symmetric and antisym- 
metric problems and their subsequent addition. 

In this case the solution of the symmetric problem (a,,= zzv = 0, tr,, = Q for 2 = t h) 

is composed of three terms, The first is given by (1.4) in which it is only known that 
the functions qi are the solutions of the appropriate differential equations. The two 

other terms (which vanish in the case of an infinite plate) are the biharmonic and vor- 
tex state of stress and strain [l, 8,9]. The solution in the antisymmetric case is com- 
prised of two terms. The first is given by (1.8), and the second by the vortex state 

of stress and strain [l, 8,9]. 
We obtain a representation of the solution for a bounded slab in tie case of non- 

uniform heating by an analogous means. The general solution is composed of the 
solutions (2.5) and (2.6) as well as the biharmonic and vortex states of stress present- 
ed in [I., 8.91, The solution obtained herein for p = p = t = 0 can be reduced to 
the form given in [l, 8, $1. 

Methods developed in [S - lo] can be used with insignificant changes t0 Solve 
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specific problems on dete~~g the state of stress of nonu~formly heated plates load- 
ed on the bamdary planes. 
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